احمد بلال للمعرفة
اهلاً بك فى منتديات احمد بلال
قم بالتسجيل وتواصل معنا
احمد بلال للمعرفة
اهلاً بك فى منتديات احمد بلال
قم بالتسجيل وتواصل معنا
احمد بلال للمعرفة
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.


منتدي للمعرفة العلمية
 
الرئيسيةأحدث الصورالتسجيلدخول
( وقل ربى زدنى علماً )
احمد بلال
منتديات احمد بلال للمعرفة بوابتك الى المعرفة
احمد بلال
العلم يرفع بيت لا عماد له *** والجهل يهدم بيت العز والشرف
احمد بلال
عزيزي القارئ حتي تكون الاستفادة اوسع قم بالتسجيل وتواصل معنا
احمد بلال

 

 التكـــــــــــــــــــــــــــــــــــــــــــــامل

اذهب الى الأسفل 
كاتب الموضوعرسالة
احمد بلال
Admin
احمد بلال


المساهمات : 235
تاريخ التسجيل : 10/11/2010

التكـــــــــــــــــــــــــــــــــــــــــــــامل Empty
مُساهمةموضوع: التكـــــــــــــــــــــــــــــــــــــــــــــامل   التكـــــــــــــــــــــــــــــــــــــــــــــامل Emptyالسبت ديسمبر 04, 2010 2:09 am

كامل



التكـــــــــــــــــــــــــــــــــــــــــــــامل 220px-Integral_as_region_under_curveالتكـــــــــــــــــــــــــــــــــــــــــــــامل Magnify-clip
مثال لحساب تكامل دالة (المساحة الرمادية)


في علم الرياضيات، تعتبر مكاملة الدالة نوعاً من التعميم لكميات قابلة للتجزئة مثل :المساحة أو الحجم أو الكتلة أو أي مجموع لعناصر متناهية في الصغر.
وأيضاً يمكن أن نقول ان عملية التكامل هي عملية عكسية لعملية التفاضل. بالرغم من تعدد التعاريف المستخدمة للتكامل وتعدد طرق استخدامه فإن نتيجة هذه الطرق جميعها متشابهة وجميع التعاريف تؤدي في النهاية إلى المعنى ذاته. يمكن اعتبار تكامل دالة حقيقية مستمرة ذات قيم موجبة لمتغير حقيقي بين قيمة حدية دنيا وقيمة حدية عليا هي المساحة المحصورة بين المستقيمين الرأسيين : x=a, x=b والمحور x والمنحني المحدد بالدالة، يمكن صياغة ذلك بشكل رياضي:التكـــــــــــــــــــــــــــــــــــــــــــــامل 35556224a364499a4160881273fe42b5ويرمز لهذه العملية حسب اصطلاح لورينتز :التكـــــــــــــــــــــــــــــــــــــــــــــامل C01a8d5bb687086396463bee3227af8b.النقطة الأساسية في التكامل تأتي من المبرهنة الأساسية في التكامل والتي تنص على أن مشتق تابع المساحة تحت منحني الدالة هو الدالة نفسها. بالتالي إذا عرفنا دالة تربط القيمة x يقيمة المساحة المحدودة بين منحني الدالة التكـــــــــــــــــــــــــــــــــــــــــــــامل 550f51512f9bb16a0f613ae65e1d3088 ومحور السينات ومن الجهة الخرى محدودة بمحور العينات والمستقيم X=x، تدعى هذه الدالة ب دالة المساحة ومشتقها هو الدالة التكـــــــــــــــــــــــــــــــــــــــــــــامل 550f51512f9bb16a0f613ae65e1d3088 نفسها، لذلك ندعو تابع المساحة عكس الاشتقاق أو التابع الأصلي للدالة التكـــــــــــــــــــــــــــــــــــــــــــــامل 550f51512f9bb16a0f613ae65e1d3088.يقوم حساب التكامل على إيجاد التابع الأصلي للدالة التي نريد القيام بمكاملتها.وقد عرض جوتفريد لايبنتز، في 13 نوفمبر 1675، أول عملية تكامل لحساب المساحة تحت منحنى الدالة ص = د(س).يوجد عدة أنواع للتكامل منها: التكامل بالتجزئ ،التكامل بالتعويض، التحويل إلى الكسور الجزئية، الاختزال المتتالى//تاريخ


التكامل ماقبل عصر علم التفاضل والتكامل

توجد دلالات تاريخية على استخدام التكامل في عهد قدماء المصريين (حوالي 1800 قبل الميلاد) فقد دلت بردية موسكو الرياضية على علمهم بصيغة لحساب حجم الهرم المقطوع. وتعد طريقة الاستنزاف من أوائل الطرق المستعملة في إيجاد التكاملات حيث تعود إلى 370 قبل الميلاد وكانت تحسب بها الحجوم والمساحات وذلك بتقسيمها إلى أشكال صغيرة غير منتهية معلومة المساحة أو الحجم. كما تم تطوير هذه الطريقة أكثرمن قبل أرشيميدس واستعمالها في حساب مساحات القطع المكافئ وتقريب لمساحة الدائرة. وفي الصين طورت طرق مماثلة في القرن الثالث الميلادي بواسطة ليوهوي, والذي استخدمها لإيجاد مساحة الدائرة كما تم استعمال هذه الطريق فيما بعد في القرن الخامس من قبل الرياضيين الصينيين - الأب والابن تسوتشونغ وزوجنغ لإيجاد حجم الكرة.[1] في نفس القرن, استخدم الرياضي الهندي اريابهاتا طريقة مشابهة لحساب حجم المكعب.[2]أتت الخطوة التالية والهامة في التفاضل التكاملي في القرن الحادي عشر عندما أخترع الحسن بن الهيثم مابات يعرف اليوم مسألة الحسن (نسبة لاسمه المشهور عند الأوروبيين) والتي تقود إلى معادلة الدرجة الرابعة. في كتابه المناظر. بينما كان يحل هذه المسألة, قام بعملية تكامل لإيجاد حجم السطح المكافئ. وقد استكاع بالاستقراء الرياضي تعميم هذه النتيجة لدوال كثيرة الحدود حتى الدرجة الرابعة وقد كان بالتالي قادرا على إيجاد صيغة عامة لتكاملات كثيرة الحدود ولكنه لم يعر أهمية لذلك انذاك.[3] بعض الفكر في التفاضل التكاملي يمكن مصادفتها أيضا في سيدهانتا شيروماني, وهي عبارة عن نص يعود للقرن الثاني عشر للفلكي الهندي بهاسكارا 2.لم يبدأ ظهور التقدم الملحوظ في علم التكامل التفاضلي إلا مع القرن السادس عشر وفي هذا الوقت كان عمل كافاليري بطريقته الكل لا التجزيء وعمل فيرمات, بدأ بوضع الأساسات لعلم التفاضل والتكامل الحديث. كان لإسحق نيوتن وتورشيلي دورا هاما أيضا في توسيع هذا العلم أوائل القرن السابع عشر اللذان قدما التلميحات الأولى في وجود صلة بين التكامل والاشتقاق في الوقت الذي كان الرياضيون اليابانيون قد أسهمو في أعمال مثيله وبشكل خاص على يد سيكي كاوا.[4] كان منها طرق إيجاد مساحات الأشكال بالتكامل, بتوسيع طريقة الاستنزاف. نيوتن وليبنز

مثل اكتشاف النظرية الأساسية للتفاضل والتكامل الفريد من قبل إسحاق نيوتن وليبنيز تقدما عظيما في علم التفاضل والتكامل. فهي توضح العلاقة بين التكامل والتفاضل. هذه العلاقة, بدمجها مع قرينتها السهلة - الاشتقاق يمكن استغلالها لحساب التكاملات. وبشكل خاص فإن النظرية الأساسية للتفاضل والتكامل تساعد في حل مسائل أكثر تعقيدا. وبإعطاء اسم التفاضل المتناهي في الصغر فقد سمحت بتحليل دقيق لدوال متصلة. لقد أصبح هذا العمل التفاض والتكامل الحديث, والذي استمد رمزه من عمل ليبنيز. صياغة التكاملات

مع أن نيوتن وليبنز أوجدا طريقة نظامية للتكامل إلا أن عملهما كان يفتقر إلى درجة الدقة. فقد هاجم جورج بركلي عبارة متناهي في الصغر ووصفها بكميات الأشباح المغادرة. اكتسب التفاضل والتكامل مع تطور علم النهايات وتوطدت أركانه بفضل أوغستين لويس كوشي في منتصف القرن التاسع عشر. تم أولا صياغة التكامل بدقة باستعمال النهايات من قبل بيرنارد ريمان كما ظهرت صورة أخرى من قبل هنري ليبزغ في تأسيس نظرية القياس. العلامة

استعمل نيوتن عمودا صغيرا فوق المتغير للإشارة إلى عملية التكامل, أو أن يضع المتغير داخل مربع. كان القضيب العمودي يلتبس مع التكـــــــــــــــــــــــــــــــــــــــــــــامل 34e40f4975c7207a5e98551ba34eedb6 والتكـــــــــــــــــــــــــــــــــــــــــــــامل Bb486aff7ef20b440eaf4dd495df3d92, والتي كان قد استعملها نيوتن للإشارة للتفاضل. كما أنه من الصعب على الطابعة التعامل مع المربع, وبالتالي لم يتم تبني هذه العلامات. الرمز الحديث للتكامل الغير محدود تم تقديمه على يد ليبنيز عام 1675 (Burton 1988, p. 359; Leibniz 1899, p. 154), كما أنه قام بموائمة رمز التكامل,:التكـــــــــــــــــــــــــــــــــــــــــــــامل 09b51ce4b5d77f40b7ca997765f9baea, بعد إطالته للحرف s كتمثيل لاختصار عملية الجمع sum. الشكل الحديث لعلامة التكامل المحدود استعمل لأول مرة من قبل جوزيف فوريير بإضافة حدود التكامل أسفل وأعلى الرمز السابق (Cajori 1929, pp. 249–250; Fourier 1822, §231).الجدير بالذكر أن الرياضيات العربية التي تكتب من اليمين لليسار تستعمل الرمز المعكوس للتكامل, التكـــــــــــــــــــــــــــــــــــــــــــــامل 25px-ArabicIntegralSign.svg، ليتماشى مع اتجاه الكتابة.(W3C 2006). مقدمة

تظهر التكاملات في العديد من الحالات التطبيقية. إذا اعتبرنا بركة السباحة مثلا, إذا كانت مستطيلة الشكل, من طولها, عرضها, وعمقها فمن الممكن إيجاد حجم الماء التي يمكن احتواؤها (لملئها), مساحتها السطحية (التي تغطيها من جميع الجهات), وطول حوافها (بحبل مثلا). لكن إذا كانت بيضاوية الشكل ومدورة من القعر, فإن كل هذه الكميات تستدعي التكامل. قد تكون التقريبات التطبيقية كافية في مثل هذه الأمثلة البسيطة ولكن الدقة الهندسية تتطلب قيما مضبوطة ودقيقة لهذه العناصر.التكـــــــــــــــــــــــــــــــــــــــــــــامل 220px-Integral_approximations.svgالتكـــــــــــــــــــــــــــــــــــــــــــــامل Magnify-clip
تقريب التكامل لـ √x من 0 إلى 1, بـ 5 عينات على اليمين (فوق) و 12 عينة على اليسار (أسفل)


للبدء, اعتبر المنحنىالتكـــــــــــــــــــــــــــــــــــــــــــــامل E80d41f8fbe708890c5f6abbeea6817c بين x = 0 وx = 1, والتكـــــــــــــــــــــــــــــــــــــــــــــامل Dd1db911aa0bcd667ffa140055ccd50f. يكون السؤال:ماهي المساحة تحت الدالة f, في الفترة 0 إلى 1?ولندعي أن هذه المساحة (حتى الآن غير معلومة) هي تكامل f. يكون الرمز لهذا التكامل هو:التكـــــــــــــــــــــــــــــــــــــــــــــامل 9139899de25f8fe8281820ac8648a1f7كتقريب أولي فلننظر في مربع الوحدة المعطى بالأضلاع x = 0 إلى x = 1 والتكـــــــــــــــــــــــــــــــــــــــــــــامل E80d41f8fbe708890c5f6abbeea6817c nbsp;= 0 and y = f(1) = 1. مساحته هي 1 تماما. ينبغي أن تكون القيمة الحقيقية للتكامل أقل مما هي عليه. بتقليل عرض المستطيلات التقريبية يعطي نتيجة أفضل, وبالتالي عبر الفترة في خمس خطوات, باستعمال نقاط التقريب 0, 15, 25, وهكذا حتى 1. بوضع مربعا مناسبا لكل خطوة مستخدمين الارتفاع المناسب لكل قطعة منحنية، وعليه 15√, 25√, وهكذا حتى 1√= 1. وبجمع مساحات هذه المستطيلات, نحصل على تقريبا أفضل للتكاملات المقصودة,التكـــــــــــــــــــــــــــــــــــــــــــــامل Af161e55809cad2ce0835f7bea31e063لاحظ أننا نأخذ مجموع لقيم دوال عديدة محدودة لـ f, مضروبة في الفرق بين فترتين تقريبيتين متعاقبتين. يمكننا ملاحظة أن التقريب ما زال كبيرا. وكلما استخدمنا خطوات أكثر حصلنا على تقريبات أفضل, ولكننا لن نحصل على قيم دقيقة أبدا: بإبدال الـ5 فترات بـ12 فترة نحصل على التقريب 0.6203, وهي تقريب أفضل. مفتاح الفكرة يكمن في الانتقال من العديد من نقاط التقريب المحدودة مضروبة بقيم دالتها إلى استعمال عدد لانهائي أو خطى متناهية في الصغر. بالنسبة للحساب الحقيقي للتكامل, تكون النظرية الأساسية للتكامل هي الرابط الأساسي بين عمليات الاشتقاق والتكامل. وبتطبيقها على منحنى الجذر التربيعي,f(x) = x1/2, تقترح علينا أن نبحث عن المشتق العكسي F(x) = 23x3/2, ونأخذ ببساطة F(1) − F(0), حيث 0 و1 هي حدود الفترة [0,1].هذه حالة لقاعدة عامة, لإجل f(x) = xq, مع q ≠ −1, تكون الدالة المتعلقة والتي تدعى المشتق العكسي هي التكـــــــــــــــــــــــــــــــــــــــــــــامل A0f780fc87311e539c00032837380c30 وبالتالي فإن القيمة الدقيقة للمساحة تحت المنحنى رسميا كما يليالتكـــــــــــــــــــــــــــــــــــــــــــــامل 1bd02afe6b50bba3c42017fd388b5482 تعريفات منهجية

هناك عدة طرق لتعريف التكامل بشكل منهجي, لكن هذه الطرق مختلفة عن بعضها البعض في الطرق التي تسلكها. بعض هذه الإختلافات ننجت عن محاولات الرياضياتيين لحل حالات خاصة من المسائل التي تكون فيها المسألة غير قابلة للتكامل, وبعضها الآخر نتجت لأسباب تعليمية -كتسهيل حل المسائل-. إن أكثر تعريفين شيوعاً للتكامل هي تكامل ريمان وتكامل لوبيغ. تكامل ريمان



التكـــــــــــــــــــــــــــــــــــــــــــــامل 220px-Integral_Riemann_sumالتكـــــــــــــــــــــــــــــــــــــــــــــامل Magnify-clip
صورة توضيحية لتكامل تقريبي عند استخدام مجموع ريمان, تم تقسم المساحة الموجودة تحت المنحنى إلى مضلعات غير منتظمة (الضلع الذي يوجد تحته الخط الأحمر هو الأعرض). القيمة الدقيقة للمساحة هي 3.76; والقيمة الفرضية هي 3.648.


يمكن تعريف تكامل ريمان على أنها أخذ مجموع ريمان للدالة الموجودة ضمن مجال جزئها المحدد Tagged partition. فإذا كان الفترة [a,b] هي فترة مغلقة في خطها الحقيقي; فإن جزئها المحدد ضمن الفترة [a,b] هي سلسلة متناهية، حيث تكون:التكـــــــــــــــــــــــــــــــــــــــــــــامل F345cad3f3eb89bb525e5cd746ea07baالتكـــــــــــــــــــــــــــــــــــــــــــــامل 250px-Riemann_sum_convergenceالتكـــــــــــــــــــــــــــــــــــــــــــــامل Magnify-clip
صورة توضيحية لمجموع ريمان عندما يتم تقسيم فترات مساحة الأضلاع إلى نصفين في كل مرة، لاحظ بأن القيمة التقريبية تزداد صحةُ كلما أزداد عدد الأضلاع.


وهذا سيجزأ الفترة [a,b] إلى n جزء ذو الفترة الجديدة [xi−1, xi]، حيث أن i يعتمد على عدد الأجزاء, كل واحد من هذه الأجزاء "تم تحديدها" بنقطة مفرِّقة ti التي تنتمي للفترة [xi−1, xi]. إذاً، تُعرّف مجموع ريمان للدالة f الموجودة ضمن الجزء المحدد من الفترة [a,b] على النحو التالي:التكـــــــــــــــــــــــــــــــــــــــــــــامل Bef9b6e60bf47251d0424175376bb70bو بالتالي، كل حد من المجموع هي عبارة عن مساحة لمضلع لديه ارتفاع تساوي قيمة الدالة عند النقطة المفرقة للجزء المعطى, ولديه عرض تساوي طول الفترة الجزئية. فلتكنΔi = xixi−1 هي عرض الفترة الجزئية i; لكي يكون تشبيك هذا النوع من الأجزاء المحددة هي نفسها عرض أكبر فترة جزئية تم تشكيلها بواسطة التجزئية, التي لها القيمة القصوى i=1…n Δi. إذاً، تكامل ريمان للدالة f في الفترة [a,b] هي مساوية للقيمة S: فإذا كان جميع قيم ε > 0، ستكون جميع قيم δ > 0. وإذا كان هناك جزء محدد في الفترة [a,b] أقل من قيمة δ, ستكون:التكـــــــــــــــــــــــــــــــــــــــــــــامل D9cd64545e841a1ad26c63f5601c86aa تكامل لوبيغ

تكامل لوبيغ للدوال الغير سالبة القيمة

لتكن التكـــــــــــــــــــــــــــــــــــــــــــــامل 9af46bb383fe8a4f657abdd59a214086 نعرف تكامل f بالنسبة للمقياس μ على أنه العدد الحقيقي الممتد التكـــــــــــــــــــــــــــــــــــــــــــــامل 5ca34a0313d239294e733b46694504b4 حيث sup يسري على كل الدوال البسيطة φ التي تحقق التكـــــــــــــــــــــــــــــــــــــــــــــامل Ae8bf8427a0d12999c1865d59ded1b4a إذا كانت E مجموعة قابلة للقياس نعرف تكامل f على E بالنسبة للمقياس μ على أنه العدد الحقيقي الممتد التكـــــــــــــــــــــــــــــــــــــــــــــامل 4137072a5a253146aae9a8303c16a161 إذا تكامل f على E هو مجرد تكامل الدالة fχE.لاحظ أن هذه الدالة غير سالبة وقابلة للقياس طالما كانت f كذلك.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://ahmedbelal.yoo7.com
 
التكـــــــــــــــــــــــــــــــــــــــــــــامل
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
احمد بلال للمعرفة :: منتدى العلــــــــــوم :: الراضيات-
انتقل الى: